Summary

- Determinant of a matrix $A = [a_{11}]_{1 \times 1}$ is given by $|a_{11}| = a_{11}$
- Determinant of a matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is given by

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \ a_{22} - a_{12} \ a_{21}$$

• Determinant of a matrix $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ is given by (expanding along R_1)

$$|\mathbf{A}| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

For any square matrix A, the |A| satisfy following properties.

- ♦ |A'| = |A|, where A' = transpose of A.
- If we interchange any two rows (or columns), then sign of determinant changes.
- If any two rows or any two columns are identical or proportional, then value of determinant is zero.
- If we multiply each element of a row or a column of a determinant by constant k, then value of determinant is multiplied by k.
- Multiplying a determinant by k means multiply elements of only one row (or one column) by k.
- If $A = [a_{ij}]_{3\times 3}$, then $|k.A| = k^3 |A|$
- If elements of a row or a column in a determinant can be expressed as sum of two or more elements, then the given determinant can be expressed as sum of two or more determinants.
- If to each element of a row or a column of a determinant the equimultiples of corresponding elements of other rows or columns are added, then value of determinant remains same.

Area of a triangle with vertices (x₁, y₁), (x₂, y₂) and (x₃, y₃) is given by

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

- Minor of an element a_{ij} of the determinant of matrix A is the determinant obtained by deleting ith row and jth column and denoted by M_{ij}.
- Cofactor of a_{ii} of given by A_{ii} = (− 1)^{i+j} M_{ii}
- Value of determinant of a matrix A is obtained by sum of product of elements of a row (or a column) with corresponding cofactors. For example,

$$|A| = a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13}.$$

- If elements of one row (or column) are multiplied with cofactors of elements of any other row (or column), then their sum is zero. For example, a₁₁ A₂₁ + a₁₂ A₂₂ + a₁₃ A₂₃ = 0
- If $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, then $adj \ A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$, where A_{ij} is cofactor of a_{ii}
- ◆ A (adj A) = (adj A) A = |A| I, where A is square matrix of order n.
- A square matrix A is said to be singular or non-singular according as |A| = 0 or |A| ≠ 0.
- If AB = BA = I, where B is square matrix, then B is called inverse of A.
 Also A⁻¹ = B or B⁻¹ = A and hence (A⁻¹)⁻¹ = A.
- A square matrix A has inverse if and only if A is non-singular.
- $A^{-1} = \frac{1}{|A|} (adj \ A)$
- If $a_1x + b_1y + c_1z = d_1$ $a_2x + b_2y + c_2z = d_2$ $a_3x + b_3y + c_3z = d_3$,

then these equations can be written as A X = B, where

$$\mathbf{A} = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}, \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

- Unique solution of equation AX = B is given by X = A⁻¹ B, where |A| ≠ 0.
- A system of equation is consistent or inconsistent according as its solution exists or not.
- For a square matrix A in matrix equation AX = B
 - (i) $|A| \neq 0$, there exists unique solution
 - (ii) |A| = 0 and $(adj A) B \neq 0$, then there exists no solution
 - (iii) |A| = 0 and (adj A) B = 0, then system may or may not be consistent.

Matrix

- A matrix is an ordered rectangular array of numbers or functions.
- \diamond A matrix having m rows and n columns is called a matrix of order $m \times n$.
- $[a_{ij}]_{m \times 1}$ is a column matrix.
- $[a_{ii}]_{1 \times n}$ is a row matrix.
- An $m \times n$ matrix is a square matrix if m = n.
- A = $[a_{ij}]_{m \times m}$ is a diagonal matrix if $a_{ij} = 0$, when $i \neq j$.

- A = [a_{ij}]_{n × n} is a scalar matrix if a_{ij} = 0, when i ≠ j, a_{ij} = k, (k is some constant), when i = j.
- A = $[a_{ij}]_{n \times n}$ is an identity matrix, if $a_{ij} = 1$, when i = j, $a_{ij} = 0$, when $i \neq j$.
- A zero matrix has all its elements as zero.
- A = [a_{ij}] = [b_{ij}] = B if (i) A and B are of same order, (ii) a_{ij} = b_{ij} for all possible values of i and j.
- $kA = k[a_{ij}]_{m \times n} = [k(a_{ij})]_{m \times n}$
- -A = (-1)A
- A B = A + (-1) B
- A + B = B + A
- \diamond (A + B) + C = A + (B + C), where A, B and C are of same order.
- ♦ k(A + B) = kA + kB, where A and B are of same order, k is constant.
- (k + l) A = kA + lA, where k and l are constant.
- If $A = [a_{ij}]_{m \times n}$ and $B = [b_{jk}]_{n \times p}$, then $AB = C = [c_{ik}]_{m \times p}$, where $c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$
- (i) A(BC) = (AB)C, (ii) A(B+C) = AB + AC, (iii) (A+B)C = AC + BC
- If $A = [a_{ii}]_{m \times n}$, then A' or $A^T = [a_{ii}]_{n \times m}$
- (i) (A')' = A, (ii) (kA)' = kA', (iii) (A + B)' = A' + B', (iv) (AB)' = B'A'
- A is a symmetric matrix if A' = A.
- ◆ A is a skew symmetric matrix if A' = -A.
- Any square matrix can be represented as the sum of a symmetric and a skew symmetric matrix.
- Elementary operations of a matrix are as follows:
 - (i) $R_i \leftrightarrow R_i$ or $C_i \leftrightarrow C_i$
 - (ii) $R_i \rightarrow kR_i$ or $C_i \rightarrow kC_i$
 - (iii) $R_i \rightarrow R_i + kR_j$ or $C_i \rightarrow C_i + kC_j$
- If A and B are two square matrices such that AB = BA = I, then B is the inverse matrix of A and is denoted by A⁻¹ and A is the inverse of B.
- Inverse of a square matrix, if it exists, is unique.